Bladder Control Implant
Biomedical engineers at Duke's Pratt School of Engineering have demonstrated for the first time that stimulating a specific nerve in the pelvis triggers the process that causes urine to begin flowing out from the bladder, refuting conventional thinking that "bladder emptying" requires signals from the brain.
Their research, carried out with animals, could lead to a "bladder pacemaker" to restore bladder control for the more than 200,000 Americans living with spinal cord injury (SCI) or disease-related spinal cord problems.
Neural engineer Warren Grill and biomedical engineering doctoral candidate Joseph Boggs found that applying small electrical currents to the pudendal nerve triggered coordinated contraction of the bladder and relaxation of the urethral sphincter, which controls the bladder's outlet. The electrical stimulation emptied 65 percent of the bladder's volume.
Until now, most bladder control research has focused on treating incontinence, a major cause of health problems such as urinary tract and kidney infections, and of skin degradation. Other research teams have reported that electrical pulses with low frequencies, about 2 to 20 cycles per second, help control incontinence by calming involuntary bladder contractions, while higher-frequency pulses do not help.
Grill hopes to complete clinical testing and be able to put bladder control implants in humans by the year 2010.
http://www.bme.duke.edu/news/?id=586
Patrick Long
VTPP 435
Their research, carried out with animals, could lead to a "bladder pacemaker" to restore bladder control for the more than 200,000 Americans living with spinal cord injury (SCI) or disease-related spinal cord problems.
Neural engineer Warren Grill and biomedical engineering doctoral candidate Joseph Boggs found that applying small electrical currents to the pudendal nerve triggered coordinated contraction of the bladder and relaxation of the urethral sphincter, which controls the bladder's outlet. The electrical stimulation emptied 65 percent of the bladder's volume.
Until now, most bladder control research has focused on treating incontinence, a major cause of health problems such as urinary tract and kidney infections, and of skin degradation. Other research teams have reported that electrical pulses with low frequencies, about 2 to 20 cycles per second, help control incontinence by calming involuntary bladder contractions, while higher-frequency pulses do not help.
Grill hopes to complete clinical testing and be able to put bladder control implants in humans by the year 2010.
http://www.bme.duke.edu/news/?id=586
Patrick Long
VTPP 435
0 Comments:
Post a Comment
<< Home